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What is Tesseract?

• A ROS independent robotic manipulator environment

• Runs motion planning and collision checking efficiently

• Dynamic scene graph

– Add, remove, or move links anywhere in the environment scene

• Highly customizable parallel planning

– Create and customize pipelines

– Create and customize individual tasks

• https://github.com/tesseract-robotics/tesseract 

https://github.com/tesseract-robotics/tesseract
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Motion Planning Goal

Generate a robot trajectory to execute a 
toolpath

Raster - A series of specified 
Cartesian waypoints to be 
executed without breaking*

Transition - A freespace move 
between rasters

Entry/Exit - A freespace move 
from/to a position away from the 
part

Trajectory - A series of joint states 
(position, velocity, acceleration, and 
time stamp) strung together

Toolpath - A collection of one or 
more rasters

Definitions



Execution Order

Planning Dependency Graph

Surface

Freespace



Two main components to solving motion 
plans in Tesseract

Algorithm C

Algorithm B

Algorithm A

Motion Plan 
Request

Motion Plan 
Results

Pipelines
Algorithm A

bool Param1
double Param2
...

Profiles



Workflows
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Surface Planning - Sampling

Descartes (https://github.com/swri-robotics/descartes_light) 

• Input: A series of Cartesian waypoints

• Output: Series of joint positions

Waypoints

Graph

sxy: a valid robot 
position for a given 
waypoint

: a valid connection
  : an invalid connection
  : optimal path

https://github.com/swri-robotics/descartes_light


Descartes Parameters

• Inverse kinematics solver (waypoint -> joint state)
• Waypoint sampler

– Fixed -> n solutions per waypoint, generally 8
– Axial -> (n)*(360°/ sample angle )
– Extra axis (7 DOF/rail/gantry)-> n*(extra axis1 samples)*(extra axis2 samples)*…

• Vertex evaluator
– Account for certain configurations that may be in violation (DCS on Fanuc)

• Edge evaluator
– Account for joint flips

• Environment collision checker
– Specify allowed collision distance



Surface Planning - Smoothing

TrajOpt (https://github.com/tesseract-robotics/trajopt)

• Input: Seed trajectory

• Output: Trajectory that is smooth, collision-free, or meets 
other specified criteria

• Functionality:

– Works by leveraging optimization algorithms

– Use costs and constraints

https://github.com/tesseract-robotics/trajopt


TrajOpt Parameters

All parameters have a coefficient that can be increased/decreased to change it’s influence
• Collision parameters (cost or constraint)

– Use weighted sum – combines collisions to be a single term
– Safety margin – how far of collision distance must be maintained
– Safety margin buffer – distance beyond safety margin to still use in optimization

• Smoothing (cost)
– Velocity 
– Acceleration
– Jerk

• Joint/Cartesian (cost or constraint) – Set a specified joint or cartesian DOF to be more or less valued
– Example: Set the 6th term in the Cartesian coefficient to be 0 to allow rotation about the z axis

• Avoid singularities (cost)
• Longest valid segment – Resolution to check validity of state (as opposed to just checking discretely 

at each point in the seed)
• Other user defined parameters (cost or constraint)



Surface Planning – Generate Timestamps

Iterative Spline Parameterization

• Input: Seed trajectory

• Output: Trajectory with timestamps that will not violate any 
robot constraints

• Parameters:

– Joint max velocities

– Joint max accelerations



Freespace Planning – Find Valid Path

• Input: Start and end state

• Output: Valid trajectory between the states

• Methods:
1. Joint interpolated motion

• Good for very short and simple motions

2. TrajOpt
• Good for slightly more complex motions that would otherwise be in collision

3. OMPL (https://ompl.kavrakilab.org/)

• Good for navigating when complex motions are needed

https://ompl.kavrakilab.org/


OMPL

• Many planning algorithms

• Often use RRT (rapidly-exploring random tree)



OMPL Planner Types

• RRT
– As seen on previous slide
– Parameters

• Range: how long each step size is
– Longer range solves big open spaces faster
– Smaller range helps get through tight spots

• Goal bias: How frequently the algorithm tries to move to the goal

• RRT-Connect (most commonly used by SwRI)
– Build a tree from each side and try to Connect them
– Parameters

• Range (same as above)

• See more at https://ompl.kavrakilab.org/planners.html 

https://ompl.kavrakilab.org/planners.html


Freespace Planning – Smoothing & 
Timestamps

Same as surface planning



Questions?
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