
ROS-Industrial Advanced
Developer’s Training Class

July 2023

Southwest Research Institute

Advanced Topic:
Motion Planning with Tesseract

Southwest Research Institute

What is Tesseract?

• A ROS independent robotic manipulator environment

• Runs motion planning and collision checking efficiently

• Dynamic scene graph

– Add, remove, or move links anywhere in the environment scene

• Highly customizable parallel planning

– Create and customize pipelines

– Create and customize individual tasks

• https://github.com/tesseract-robotics/tesseract

https://github.com/tesseract-robotics/tesseract

PART

Motion Planning Goal

Generate a robot trajectory to execute a
toolpath

Raster - A series of specified
Cartesian waypoints to be
executed without breaking*

Transition - A freespace move
between rasters

Entry/Exit - A freespace move
from/to a position away from the
part

Trajectory - A series of joint states
(position, velocity, acceleration, and
time stamp) strung together

Toolpath - A collection of one or
more rasters

Definitions

Execution Order

Planning Dependency Graph

Surface

Freespace

Two main components to solving motion
plans in Tesseract

Algorithm C

Algorithm B

Algorithm A

Motion Plan
Request

Motion Plan
Results

Pipelines
Algorithm A

bool Param1
double Param2
...

Profiles

Workflows

Surface

Generate
Timestamps

Smooth

Sample

Freespace

Generate
Timestamps

Smooth

Find Valid
Path

s00

s01

s0n

s10

s11

s1n

s20

s21

s2n

s30

s31

s3n

Surface Planning - Sampling

Descartes (https://github.com/swri-robotics/descartes_light)

• Input: A series of Cartesian waypoints

• Output: Series of joint positions

Waypoints

Graph

sxy: a valid robot
position for a given
waypoint

: a valid connection
 : an invalid connection
 : optimal path

https://github.com/swri-robotics/descartes_light

Descartes Parameters

• Inverse kinematics solver (waypoint -> joint state)
• Waypoint sampler

– Fixed -> n solutions per waypoint, generally 8
– Axial -> (n)*(360°/ sample angle)
– Extra axis (7 DOF/rail/gantry)-> n*(extra axis1 samples)*(extra axis2 samples)*…

• Vertex evaluator
– Account for certain configurations that may be in violation (DCS on Fanuc)

• Edge evaluator
– Account for joint flips

• Environment collision checker
– Specify allowed collision distance

Surface Planning - Smoothing

TrajOpt (https://github.com/tesseract-robotics/trajopt)

• Input: Seed trajectory

• Output: Trajectory that is smooth, collision-free, or meets
other specified criteria

• Functionality:

– Works by leveraging optimization algorithms

– Use costs and constraints

https://github.com/tesseract-robotics/trajopt

TrajOpt Parameters

All parameters have a coefficient that can be increased/decreased to change it’s influence
• Collision parameters (cost or constraint)

– Use weighted sum – combines collisions to be a single term
– Safety margin – how far of collision distance must be maintained
– Safety margin buffer – distance beyond safety margin to still use in optimization

• Smoothing (cost)
– Velocity
– Acceleration
– Jerk

• Joint/Cartesian (cost or constraint) – Set a specified joint or cartesian DOF to be more or less valued
– Example: Set the 6th term in the Cartesian coefficient to be 0 to allow rotation about the z axis

• Avoid singularities (cost)
• Longest valid segment – Resolution to check validity of state (as opposed to just checking discretely

at each point in the seed)
• Other user defined parameters (cost or constraint)

Surface Planning – Generate Timestamps

Iterative Spline Parameterization

• Input: Seed trajectory

• Output: Trajectory with timestamps that will not violate any
robot constraints

• Parameters:

– Joint max velocities

– Joint max accelerations

Freespace Planning – Find Valid Path

• Input: Start and end state

• Output: Valid trajectory between the states

• Methods:
1. Joint interpolated motion

• Good for very short and simple motions

2. TrajOpt
• Good for slightly more complex motions that would otherwise be in collision

3. OMPL (https://ompl.kavrakilab.org/)

• Good for navigating when complex motions are needed

https://ompl.kavrakilab.org/

OMPL

• Many planning algorithms

• Often use RRT (rapidly-exploring random tree)

OMPL Planner Types

• RRT
– As seen on previous slide
– Parameters

• Range: how long each step size is
– Longer range solves big open spaces faster
– Smaller range helps get through tight spots

• Goal bias: How frequently the algorithm tries to move to the goal

• RRT-Connect (most commonly used by SwRI)
– Build a tree from each side and try to Connect them
– Parameters

• Range (same as above)

• See more at https://ompl.kavrakilab.org/planners.html

https://ompl.kavrakilab.org/planners.html

Freespace Planning – Smoothing &
Timestamps

Same as surface planning

Questions?

PART

	Default Section
	Slide 1: ROS-Industrial Advanced Developer’s Training Class
	Slide 2: Advanced Topic: Motion Planning with Tesseract
	Slide 3: What is Tesseract?
	Slide 4: Motion Planning Goal
	Slide 5
	Slide 6: Two main components to solving motion plans in Tesseract
	Slide 7: Workflows

	Untitled Section
	Slide 8: Surface Planning - Sampling
	Slide 9: Descartes Parameters
	Slide 10: Surface Planning - Smoothing
	Slide 11: TrajOpt Parameters
	Slide 12: Surface Planning – Generate Timestamps
	Slide 13: Freespace Planning – Find Valid Path
	Slide 14: OMPL
	Slide 15: OMPL Planner Types
	Slide 16: Freespace Planning – Smoothing & Timestamps
	Slide 17: Questions?

